
CrisisNET Architecture
The system consists of three primary components. Sucka, which retrieves data from the Internet or local filesystem, Grimlock, a processing pipeline

which transforms/augments documents, and CrisisNET, a REST API.

Sucka

The component understands how to retrieve data based on documents stored in the application database. These documents defineSucka Source

where the source's information is located (API endpoints, URIs, etc), authentication credentials, how frequently information should be retrieved from

the source, etc. The source document is interpreted by a module () that performs the retrieval and transforms the data into the sucka example structu

, an .re expected throughout the system Item

Authors of individual have autonomy to add whatever metadata may be applicable to the ingested data during the transformation step. Forsuckas

example tags/categorization or geospatial information. However, using onlysucka modules should do the bare minimum amount of transformation,

the third-party data when performing the transformation (so avoid making external requests to geocode an address, for example). Augmentation

requiring more complex processing is performed in other parts of the system.

After data has been transformed it is stored in the application database and is therefore immediately available to consumers of the CrisisNET API.

Once an Item is stored, a task is published to the system's central job queue denoting that the Item is ready for additional processing.

Sucka is written in (v0.10.26), and for the time being suckas must also be written as Node.js modules. Retrieval tasks are scheduled in a Node.js redi

 datastore using the framework. For example a task can be run every minute, hour, day, etc. s kue

Grimlock

Grimlock is a transformation/processing pipeline. It reads jobs from a redis queue, retrieves Item documents from the application datastore and

passes those documents through a series of tasks to add metadata like geospatial information, categorization/classification, etc. Any Python module

can be a task, assuming it contains a method that accepts and returns an document. .run Item Here's a simple example

The "pipeline" is essentially a composition of its functions (in reverse order), so if you have tasks A, B and C, the pipeline is C(B(A())) – the last task

accepts the return value of the second-to-last task, which accepts the value of the third-to-last task, and so on. It's important to keep this in mind for

two reasons: 1) the last task should save the augmented Item back to the datastore, and 2) downstream tasks can build upon the work of tasks

executed earlier in the pipeline. So, make tasks as simple and discrete as possible – each task has one responsibility/makes a single

 transformation.

CrisisNET

The main handles user registration/authentication, and exposes a REST API for retrieving Item based on query parameters. ItCrisisNET application

is written in Node.js and retrieves Items from MongoDB.

The diagram below offers a high-level overview of the system. Keep in mind it includes a number of planned components that aren't required for

basic functionality (and subsequently don't exist yet).

https://github.com/ushahidi/sucka
https://github.com/ushahidi/sucka/blob/master/app/modules/cn-store-js/source.js
https://github.com/ushahidi/sucka/blob/master/app/modules/suckas/kenya-traffic-incidents-2011.js
https://github.com/ushahidi/sucka/blob/master/app/modules/cn-store-js/item.js
https://github.com/ushahidi/sucka/blob/master/app/modules/cn-store-js/item.js
http://nodejs.org/
http://redis.io/
http://redis.io/
https://github.com/learnboost/kue
https://github.com/ushahidi/grimlock
https://github.com/ushahidi/grimlock/blob/master/src/tasks/format_address.py
https://github.com/ushahidi/crisisnet

	CrisisNET Architecture

