
Code Organisation
The Ushahidi Platform is split into 3 layers: Presentation (Frontend), Services

(API), and Data. The API layer consists of a core application and a delivery

mechanism. The core application is pure object-oriented PHP and the delivery

mechanism is a PHP application built using the Kohana Framework. The

Frontend is a javascript application, built on BackboneJS.

In theory the Kohana application could handle frontend views and interactions

too, but splitting the API out allows us far greater flexibility in the variety of

applications that we can build. Mobile apps, 3rd party integrations, etc are not

2nd class citizens: they can consume the same API as our primary frontend.

The API has to be able to do everything to our data.

Containing the core business logic within a core application that is separate

from the Kohana delivery layer allows us to test the core application,

independent of the database (or any other implementation) while alsodetails

enforcing the internal API by which the rest of the system operates. This allows

us to modify internal details, such as the database structure, without breaking

the external API, as well as ensuring that the entire system remains in a stable,

tested state.

API Delivery

Core Application

Models

Controllers

Base API

Controller

Frontend

Startup execution

config/Init.j

s

App.js

Router and

Controller

Layouts

and

Regions

A

p

pL

ay

ou

t

Getting the

Frontend UI to the

browser

Main

controller

Kohana

Media

module

OAuth

File structure: what lives

where?

API Delivery

Within the API there are two layers: the delivery and the business logic (core application). The delivery layer follows a (MVC)Model View Controller

pattern, with the View consisting of JSON output. The Controllers use a to load and execute various tools, taking the API requestService Locator

http://backbonejs.org/
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Service_locator_pattern

inputs and returning the requested resources.

Core Application

Within the core application, we use generally follow the . The central part of the business logic is defined as use cases andClean Architecture

entities. All dependencies flow inwards towards the entities, which have no dependencies. In order to bring user input to the use cases, we create a

 (DTO) and pass this object from the delivery layer into the use case. The DTO is a very simple object which is defined by theData Transfer Object

use case and contains all of the possible inputs for that specific use case. In order to create the DTO, we use a Parser object. The DTO is then

checked for consistency by using a Validator. Once validated, the use case will complete its execution and return the resulting entities back to the

delivery layer for conversion via a Formatter. (For a longer overview of clean architecture and how it is implemented, please read Ushahidi Platform:

). Data flow within the platform can be visualized as:Under the Hood, Part 1

Models

Modeling within Ushahidi is primarily handled at the core application level with entities. Each entity also defines a read-only repository interface for

the database access layer. The writable repository interfaces are defined by each use case that requires storage. The readable and writable

interfaces are implemented within the delivery layer, to keep the core application free of storage details. Typically, the implementation of multiple

related interfaces will be done by a single object. For instance, the user storage object will implement the to read users, as wellUserRepository

as the , , , etc. Repository read operations will always return anUserRegisterRepository UserLoginRepository UserUpdateRepository

entity, or collection of entities. Writing operations can have various output, depending on the situation.

Verification of incoming data for writing operations is first parsed into a DTO, which is then validated by the use case.

Formatting of entities into consumable resources is done at the delivery layer.

Controllers

Each request to the API is routed to an API controller, and action. The controller code processes any user input and returns generates a JSON

response. The controller actions are mapped based on the type of HTTP request (GET, POST, PUT, DELETE, etc):

HTTP Description Action

GET /foo get collection of "foo" entities action_get_index_collection

GET /foo/:id get "foo" entity of "id" action_get_index

POST /foo create a new "foo" entity action_post_index_collection

PUT /foo/:id update "foo" entity of "id" action_put_index

DELETE /foo/:id delete "foo" entity of "id" action_delete_index

Every controller that responds to API requests will follow this pattern.

Note that this diagram is not ideal and will be changing before the final version of the platform. Specifically, data is flowing backwards to

the controller and should be flowing directly into the formatter. We will be addressing this in the near future.

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://en.wikipedia.org/wiki/Data_transfer_object
http://www.ushahidi.com/ushahidi-platform-under-the-hood-part-1/
http://www.ushahidi.com/ushahidi-platform-under-the-hood-part-1/

1.

2.

3.

Base API Controller

All API controllers are built off a base controller - - which handles a large amount of the repeatedapplication/classes/Ushahidi/Api.php

code in the API. The base controller takes care of:

Initial access checks (oauth2 scope, general access to this resource type)

Parsing the incoming request. We handle GET/POST/PUT/DELETE requests through different controller actions, and split collection from

individual resource handlers. For example:

POST /api/v2/posts is routed to Controller_Api_Posts::action_post_index_collection();

GET /api/v2/tags/1 is routed to Controller_Api_Tags::action_get_index();

The second part of this is parsing the request data. For GET requests theres not much to do here, except for check any query params for

sorting/filtering/etc. For PUT/POST requests the base controller handles decoding the JSON passed in the request body.

Formatting the outgoing response. Individual API controllers only have to set $this->_response_payload to a PHP array. The encoding of

this data is left up to the base controller. The base controller will check the format parameter and encode the data as either JSON or

JSONP, as requested by the query string `format` parameter.

Frontend

The frontend for Ushahidi 3.x is a javascript application (in the browser) built on (&). All data for the application is loadedBackboneJS Marionette JS

from the API. The javascript itself is broken down into many 'modules' which are loaded by .RequireJS

The javascript application lives in modules/UshahidiUI/media/js. The structure here is:

lib/ - 3rd party libraries (jquery, backbone, etc)

app/ - All custom application modules

collections/ - All collection classes

controllers/ - All controllers, currently only a single controller in Controller.js

routers/ - All routes, currently only a single router in AppRouter.js

views/ - All view classes

templates/ - Handlebarsjs templates used by the views

util/ - small utility modules

App.js

config/Init.js

tests/ - Frontend test (not yet built out)

Startup execution

config/Init.js

Init.js is first file loaded by requireJS. It sets up some initial RequireJS config (paths, and shims for non AMD modules), requires other App files and

starts the App. It's simple enough to include most of its code below

http://backbonejs.org/
http://marionettejs.com/
http://www.requirejs.org/

// Cut down excerpt from Init.js

require.config(
{
 baseUrl : "./media/kohana/js/app",
 paths :
 {
 // Set paths to libraries
 },
 shim :
 {
 // Shim non AMD modules
 }
}

require(["App", "routers/AppRouter", "controllers/Controller", "jquery", "jqueryui", "backbone.validateAll"],
 function(App, AppRouter, Controller) {
 App.appRouter = new AppRouter(
 {
 controller : new Controller()
 });
 App.start();
 window.App = App;
 });

App.js

This is the module for the main application object.. there's not actually a lot that goes on here: we create the object, add regions, save our config

and oauth objects for later, and add an 'Initializer' callback. The initializer callback is fired when the application starts, and all it does is start

Backbone.history..

Router and Controller

Once the App class has started, most control is handed over to the router and controller class. The router maps a url to a controller and action, at

the moment these mappings are all fairly simple.

// AppRouter.js
define(['marionette', 'controllers/Controller'],
 function(Marionette, Controller) {
 return Marionette.AppRouter.extend(
 {
 appRoutes :
 {
 "" : "index",
 "views/list" : "viewsList",
 "views/map" : "viewsMap",
 "posts/:id" : "postDetail",
 "*path" : "index"
 }
 });
 });

Each route maps directly to a function in the controller. The controller handles switching layouts and regions, creating views and binding models or

collections to these.

I've shown part of the Controller.js file below. The 'initialize' function is run when the App first starts. It creates an 'AppLayout' - this is kind of a

special view with several regions

// Controller.js
 Backbone.Marionette.Controller.extend(
 {
 initialize : function(options) {
 this.layout = new AppLayout();
 App.body.show(this.layout);

 var header = new HeaderView();
 header.on('workspace:toggle', function () {
 App.body.$el.toggleClass('active-workspace')
 });

 this.layout.headerRegion.show(header);
 this.layout.footerRegion.show(new FooterView());
 this.layout.workspacePanel.show(new WorkspacePanelView());

 App.Collections = {};
 App.Collections.Posts = new PostCollection();
 App.Collections.Posts.fetch();
 App.Collections.Tags = new TagCollection();
 App.Collections.Tags.fetch();
 App.Collections.Forms = new FormCollection();
 App.Collections.Forms.fetch();

 App.homeLayout = new HomeLayout();
 },
 //gets mapped to in AppRouter's appRoutes
 index : function() {
 App.vent.trigger("page:change", "index");
 this.layout.mainRegion.show(App.homeLayout);

 App.homeLayout.contentRegion.show(new PostListView({
 collection: App.Collections.Posts
 }));
 App.homeLayout.mapRegion.show(new MapView());
 App.homeLayout.searchRegion.show(new SearchBarView());
 },
 // etc
 });

Layouts and Regions

All the HTML in the Ushahidi 3.x UI is built using backbone views and handlebars templates. We use MarionetteJS Layouts and Regions to

combined many nested views. The base views and regions are managed through AppLayout and and HomeLayout. A is basically a wrapperregion

around a particular DOM element to make it easy to show/hide a view inside that DOM element. A is basically a view with several regionslayout

bound to it, ie. we use a view to render some HTML then bind several regions to parts of the view's HTML output.

AppLayout

The AppLayout is the top level view for the application. It populated the <body> tag with HTML and create the header, main, footer, workspace and

https://github.com/marionettejs/backbone.marionette/blob/master/docs/marionette.region.md
https://github.com/marionettejs/backbone.marionette/blob/master/docs/marionette.layout.md

modal regions. The header, footer and workspace regions mostly keep the same views. The modal region is used for modal popups like create or

edit post. There are a few different views/layouts we swap in and out of the main region: HomeLayout, PostDetailLayout, SetListView, etc.

Getting the Frontend UI to the browser

One thing you will notice if you dig into the code, is that the docroot (httpdocs/) actually only contains a small number of files, and all requests are

passed to index.php. The frontend (JS/CSS/HTML/etc) is still served up by the same Kohana application as the API. The frontend actually lives in a

Kohana module: UshahidiUI. This handles a couple of things:

the base route '/', controller and views

serves 'media' files: javascript, css, images, fonts.

Main controller

This controller handles requests for '/' - the main page of a deployment. This controller does very little real work: its builds an array of config data,

and renders a single view - 'modules/UshahidiUI/views/index.php'.

abstract class Ushahidi_Controller_Main extends Controller_Template {

 public $template = 'index';

 public function action_index()
 {
 $this->template->site = array();
 $this->template->site['baseurl'] = Kohana::$base_url;
 $this->template->site['imagedir'] = Media::uri('/images/');
 $this->template->site['cssdir'] = Media::uri('/css/');
 $this->template->site['jsdir'] = Media::uri('/js/');
 $this->template->site['oauth'] = Kohana::$config->load('ushahidiui.oauth');

 }

}

This view generates the starting HTML for our application, including tags to load JS/CSS files and turning that configuration array in a json object.

After the browser loads this view, everything is hanled by the javascript application, and the API.

Kohana Media module

OAuth

OAuth - handled as part of the API, mostly abstracted to a module, etc

File structure: what lives where?

src

Ushahidi

Entity - Application entities

Tool - Basic tools and tool interfaces

Traits - Reusable traits

Usecase - Application use cases, Data objects, and Repository interfaces

spec - tests for core applicationPHPspec

application

classes

http://php.net/traits
http://phpspec.net/

Ushahidi

Api.php - Abstract base class for all API controllers

Controller

Api - All API controllers

config

environments - environment specific config overrides

auth.php - config for kohana auth module

database.php - database config

init.php - init config, passed to kohana::init()

media.php - config for kohana-media module

modules.php - module paths to be loaded

migrations - database migrations

routes

default.php - Default route definitions, can be overridden per environment

tests

classes - PHPUnit tests

features - Behat tests and contexts

datasets - Datasets used in testing

views

api - api error views

oauth - views for oauth authorization flow

vendor - vendor libraries ie. gisconverter

bootstrap.php - Kohana bootstrap file: loads and configures the kohana framework.

modules

UshahidiUI

classes

Controller

Main.php - Main controller: handles frontend routes (/<action>)

Ushahidi

Controller

Main.php - Base class for main controller

config

ushahidiui.php - UI config, passed as JSON object to frontend JS

media

js

lib - JS libraries

app - Application JS. All files are loaded as requireJS modules

collections - BackboneJS collections

config

Init.js - Require JS Init files, configures requirejs and initializes the app.

controllers - controllers

Controller.js - application controller, currently the only controller

models - BackboneJS modles

routers - Backbone JS routers

AppRouter.js - application router, currently the only router.

templates - handlebarsjs templates

util - small utility modules

views - BackboneJS views

App.js - Main Application module: sets up main application class with regions, initializers etc

tests - Frontend tests (not used yet)

css - Frontend CSS, compiled and 3rd party css files (such as fontawesome)

images - images for the frontend ui

font - font files for the frontend ui

scss - Source SCSS files

views

index.php - frontend view: contains just the initial html, with an empty body.

init.php - UshahidiUI module init script, add a single frontend route.

Gruntfile.js - Grunt config, used to build SCSS files to CSS, compile requirejs files, etc

httpdocs

index.php - Loads and bootstraps Kohana..

template.htaccess - .htaccess template file, copy to .htaccess and customize

vendor - modulesComposer

https://getcomposer.org/

	Code Organisation

